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The stability to small inviscid disturbances of a rotating flow, whose velocity 
components in cylindrical polars ( r ,  8, x )  are (0, V(r) ,  0) ,  is investigated when one 
boundary of the flow (r = b )  is a free surface under the action of surface tension 
(y) ,  and the other is either at  infinity, or a rigid cylinder (r = a i. b) ,  or at the 
axis ( r  = 0). The free surface may be the inner or the outer boundary. A necessary 
and sufficient condition for stability to axisymmetric disturbances is derived, 
which requires that Rayleigh’s criterion of increasing circulation be satisfied, and 
otherwise depends only on b, V(b),  y and the density of the swirling liquid. This 
condition may be extended to include non-axisymmetric disturbances when 
V‘oc l/r and when Vcc r although in the latter case it is no longer a necessary one. 
It is shown that, in the case Vcc r,  as well as Vcc l/r, the ‘most unstable’ disturb- 
ance on a rotating column of fluid will be non-axisymmetric if the rotation speed 
at  the surface is sufficiently great. Several applications of the theory are sug- 
gested, and a possible experiment to test it is described. 

1. Introduction 
The purpose of this paper is to investigate the hydrodynamic stability of a 

general swirling flow, velocity components (0, V(r) ,  0 )  in cylindrical polar 
co-ordinates (r,  8, z ) ,  when one boundary of the flow, the cylinder r = b, is a free 
surface under the action of surface tension. This surface may be the outer or the 
inner boundary of the flow, and the other boundary is in general taken to be a 
concentric rigid cylinder of radius a (a + b ) ,  where the two special cases a = co- 
i.e. the situation is that of an unbounded fluid (e.g. water) swirling round a 
hollow (air) core-and a = 0-there is a swirling column of (say) water in air, 
unattached to any rigid boundary-are included, and must sometimes be dis- 
cussed separately. The analysis will be restricted to small disturbances (so that 
the equations of motion may be linearized) and viscosity will be ignored, as will 
the inertia of the ‘air’. 

The problem is seen to be an amalgamation of two classical stability problems. 
(i) The first is the stability of inviscid rotating flows between two concentric, 
rigid, circular cylinders, where a necessary and suEicient condition for stability 
to axisymmetric disturbances is that the square of the circulation should nowhere 
decrease outwards-i.e. I d  

r3 dr 
@(r)  = - - (r2V2) 2 0 (1.1) 
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everywhere (this result was first given by Rayleigh (1916); see Lin (1955, p. 50) 
for a rigorous proof). The result is not valid for non-axisymmetric disturbances. 
(ii) The other relevant classical problem is the stability of a cylindrical fluid 
surface (radius b) under the action of surface tension, when there is no rotation- 
the only motion in the undisturbed state is a uniform axial velocity which may 
be removed from the problem by a suitable choice of co-ordinates. Here a neces- 
sary and sufficient condition for stability to a general disturbance, with wave- 
numbers k in the axial direction and n in the azimuthal direction-the z- and 
&dependence of all perturbation flow quantities may be written exp [ i (kz  + no)]- 
is that 

1 - n2 - k2b2 < 0. 

This result is also due to Rayleigh (1879). Note that, since n is an integer (for 
quantities to be periodic in O), only axisymmetric disturbances (n  = 0) can be 
unstable, and those for which k < l / b  will be unstable. 

The combined problem has been attempted by several authors, but only when 
the basic rotation takes one of two simple forms, either V(r )  = r / r  (potential 
vortex flow) or V(r)  = SZr (solid-body rotation). The present paper seeks to 
extend their results to general forms of V(r) ,  for both axisymmetric and non- 
axisymmetric disturbances, although success in the latter case has been limited. 
The results of previous authors, and the new ones derived in this paper, are best 
presented in the form of table 1, where the conditions for stability to all types of 
disturbance-axisymmetric (n  = 0 ) ,  plane (k = 0 ) ,  and general (n + 0, k + 0)- 
of different basic swirl velocity fields V(r )  are displayed, with an indication of 
whether the given condition is necessary for stability, or sufficient, or both. The 
sources of these results are also given (the quoted paper by Hocking (1960) is 
a verification and extension of earlier work by Hocking & Michael (1959))) and an 
asterisk means that the result is believed to be new. Much of the notation has 
already been introduced; Q ( r )  is defined by (l.l),  and the quantities A+ and A- 
are defined as follows: 

(1.2) 

1-n2-k2b2&- 
Y 

where p is the density of the fluid, and y is the surface tension of the free surface. 
A+ is the relevant quantity when the free surface is the outer boundary of the 
flow (b  > a), and A- is the relevant quantity when the free surface is the inner 
boundary (b < a). Whenever results for the two cases are combined in one expres- 
sion (e.g. A&),  the upper sign will refer to a free outer boundary, and the lower 
sign to a free inner boundary. 

We may notice that in all situations where A ,  6 0 is a necessary and sufficient 
condition for stability, then, when the outer boundary is free, the cylindrical free 
surface is destabilized by rotation; and, when the inner boundary is free, it is 
stabilized. For instance, an axisymmetric disturbance with wave-number k 
greater than l / b  is stable in the absence of rotation (from (1.2)), but (1.3) shows 
that A+ can be positive for any k, when the outer boundary is free, provided that 
the basic swirl velocity at r = b is large enough. In  addition, some non-axisym- 
metric disturbances, stable without rotation, become unstable when rotation is 
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included, and indeed, for sufficiently large V ( b ) ,  the most unstable disturbance 
(that mode in which instability is in fact exhibited) may be non-axisymmetric; 
Ponstein (1959) shows this to be the case when B = r / r ,  and it is shown in $ 6  
below that it is also true when 'v = Qr. Similarly, we see that, when the inner 

A- can never be negative, and the surface must be stable to all disturbances. 

boundary is free and pbV2(b)ly z 17 

Type of disturbance 

Basic velocity field Axisymmetric Plane General 

A , < O  

V(r)  (n = 0) ( k  = 0) (n * 0, k * 0) 

Potential vortex A , < O  A , < O  
flow r / r  necessary and necessary and necessary and 

sufficient sufficient sufficient 

Ponstein (1959) 

Solid-body rotation A , < O  A , < O  
pbv2(b) < n(n+ 1) sufficient* 

Y !2r necessary and 
Sufficient necessary and 

Hocking (1960) sufficient 
(case (a ) )  Hocking (1960) 

Rosenthal(l962) (case ( a )  only). 
(case ( b ) )  Case ( b )  is stable* 

General : A,<O A ,  G O  and 
necessary and d ( V )  8k2zzV(r) o < - -  <- @(r) a 0 

everywhere sufficient* dr r 

General : 
@(r) < 0 

somewhere 

Unstable* sufficient (not very 
helpful) * 

TABLE 1. Conditions for stability of the rotating flow given in the left-hand column, to 
disturbances given in the top row, with sources. Cases (a)  and ( b )  refer to the free surface being 
the outer and inner boundary respectively. Asterisk indicates new result. 

The exact analysis involved in deriving the asterisked results of table 1 is 
somewhat lengthy, so, before it is undertaken, a heuristic argument will be 
presented (in $3) showing the plausibility of the results for axisymmetric dis- 
turbances to general swirling flows. The complete equations and boundary condi- 
tions are set down in 9 2. In § 4 a sufficient condition for stability is derived in as 
general a manner as possible, although it can be usefully extended to non- 
axisymmetric disturbances only in the case of solid-body rotation. Then in $ 5 
the necessary condition for stability to axisymmetric disturbances, of flows with 
a general V(r ) ,  is rigorously derived. Section 6 consists merely of a demonstration 
that the most unstable disturbance for solid-body rotation, when the outer 
boundary is free, is in some circumstances non-axisymmetric, while $ 7  considers 
possible applications of the results, suggests an experiment to test them, and 
assesses the hitherto neglected effect of viscosity on the stability criteria. 

9 Fluid Meoh. 30 
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2. Equations and boundary conditions 
Equations 

Let us assume a small disturbance to the basic flow, writing the velocity compo- 
nents as (ii, V(r)  + E ,  G) and the pressure as p[P(r) +@I, where p is the density of 
the water, and P(r )  is given by 

d P  v2 

dr r 
- = -  

(the basic flow equation). If we neglect squares and products of the disturbance 
quantities, the full inviscid equations of motion may be linearized. The linear 
equations are separable, and the general solution for ti (for example) is expres- 
sible as a sum of components like 

ti = u(r)exp[i(cct+kz+nO)]; 

because of the linearization, it is possible to consider just one such Fourier com- 
ponent at  a time, superposing the solutions later if it  is required to fit them to 
given initial conditions. Thus we may assume that the quantities ti, v", 63, take 
the form: 

(C, 5, G, p )  = [u(r), o(r), w(r) ,p(r)]  exp [i(at + kz + nO)], 

where real parts are assumed to be taken when results are to be applied to the 
real quantities (ti, v", G, j3)) and where for a real disturbance k is positive and n is 
an integer. 

If we now follow Howard & Gupta (1962) and eliminate w(r), w(r) and p(r )  
from the linearized equations, we are left with the following single ordinary 
differential equation for u(r): 

nV in which cr = a+--, 
r 

and @(r)  is given by (1.1). An equation for p ( r )  in terms of U ( T )  (necessary for 
applying the boundary conditions) is 

irp - d (ru) 2nVu, 
u2X dr u ru2 
_ _ - -  - _ _ _  

Boundary conditions 
The equation (2.2) is of second order, so that one condition at each end of the 
range of r ,  @,a) ,  will be sufficient to determine the solution. First of all the 
condition at r = a: if a = 0 or a finite constant, it will be seen that no radial 
velocity is possible there, so the condition to be applied is u = 0. In  the case 
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where a is infinite, we must at least apply the condition that the energy density 
of the disturbance tends to zero. The first boundary condition is thus 

r = 0, 

r = a (finite), 
u = 0, 

u = o(v-4), 

The second boundary condition must be applied at  the free surface, which we 

r = b + 8 ,  may take to be given by 

where 8 = Sexp [i(at + kz + no)] (2.7) 

and 161 < b 

r 

z :  

FIGURE 1. Axial cross-section of the disturbed surface. 

(see figure 1). The dynamic boundary condition states that the total pressure in 
the fluid a t  v = b + 8 is equal to the apparent pressure there due to the effect of 
surface tension. In  other words 

p ( P + @ ) =  + y  -+- on r=b+s” ,  (2.8) GI ;%) 

where y is the surface tension, and R, and R2 are the principal radii of curvature 
of the surface. The plus sign is to be taken when the outer boundary is free and 
the minus sign when the inner boundary is free. To the first order in IS/bl, the 
right-hand side of (2.8) is then 

when 8 is given by (2.7). The value of P on the surface in the undisturbed state 
must be & y / p b  in order that equilibrium may be possible. Hence, at a general 
radius r,  (2.1) tells us that 

~ 

P = k - + J i T d r .  Y 
Pb 

9-2 



132 T. J .  Pedley 

On the disturbed surface, therefore, 

=TA,(Y (2.10) 

from the definition (1.3) of A,. 
But there is also a kinematic boundary condition to be satisfied: the normal 

velocity on the free surface when determined from the rate of change of 8 must 
be the same as when it is determined from the velocity components (C, E ,  G). To 
the first order in I(Y/bl this requires that 

so (2.10) becomes i q = T A , u  on r = b .  (2.11) 

(2.6) and (2.11) are the boundary conditions to be applied to any solution u of 
(2.2); p is given in terms of u by (2.5). 

The problem is to find the eigenvalues for a2 (a2 > 0 means an oscillating 
stability; a2 < 0 or complex means instability or overstability) for every integer 
value of n and for every positive value of k with all forms of the function @(r)  
and either sign for A,. 

3. A heuristic argument 
Rayleigh’s original argument that the square of the circulation must increase 

outwards for a swirling flow to be stable to axisymmetric disturbances was based 
on a consideration of the change in centrifugal potential energy when a ring of 
fluid at  radius rl is interchanged with one at r2 (+ r l ) ,  and in no way depended 
on conditions at the rigid flow boundaries. The argument appears to be unaffected 
in the present case where these boundaries are not both rigid, so we would expect 
a necessary condition for stability still to be (l.l), 

@(r)  2 0 everywhere. 

Now, even when this criterion is satisfied, and the interior of the fluid is 
essentially stable, the surface may be unstable, owing to the action of surface 
tension. To see this simply, let us consider a flow in which @(r)  is everywhere 
positive, with an axisymmetric disturbance of wave-number k (where k > 0 still), 
and let us suppose that conditions at the surface make it only just unstable, 
i.e. c2 is negative, but very small (see 5 5 for a proof that c2 must be real for axi- 
symmetric disturbances). Without loss of generality, also, let the outer boundary 
be the free surface. If the slowly growing disturbance were to create radial dis- 
placements in the interior of the fluid, the basic rotational restoring force 
(cf. Rayleigh’s (1916) argument) would rapidly pull them back, with a frequency 
proportional to the vorticity in the fluid (which is only zero when @ ( r )  = 0, so in 
our case it is non-zero) in other words much more quickly than the disturbance 



Stability of rotating JEows 133 

itself would try to grow, since 1c21 is very small. Thus, in this case of small 
negative c2, we should expect a negligible disturbance in the interior of the fluid, 
with disturbance velocities confined principally to a thin layer near the free 
surface, so that necessarily they will be an order of magnitude larger in the axial 
and azimuthal directions than in the radial direction. Hence some form of 
boundary-layer analysis should reveal this type of disturbance, and, as c2-+ 0, it 
should indicate a critical wave-number, below which all disturbances are un- 
stable, and above which they are stable. 

When n = 0, (2.2) reduces to 

r -  d (- la$  -) -P$[ 1 -%)I = 0, 
dr r dr 

where $ = ur. Now if we write c2 = - r2,  where 0 < r2 < @(b),  we see that 
d2$/dr2 must be much larger than k2$ for (3.1) to hold. Let us therefore seek a 
boundary-layer type of solution and replace r by b( 1 - y). Equation (3.1) can now 
be simplified even further, in the region y < 1, to 

where @(b) has been put equal to 4Q2. The boundary condition at y = 0, from 
(2.11) and (2.5), may now be written 

That solution of (3.2) which does not grow exponentially as y increases is 

(3.3) 

where T is positive and C is an arbitrary constant; and, if we put this into (3.3), 
we obtain the relation 

kA+ = ~ Q T .  (3.5) 

In  other words, this boundary-layer solution is consistent with the physical con- 
ditions of the problem, so long as the wave-number k is related to the positive 
growth rater byequation (3.5) (remember thatk also appears in A+ ; see equation 
(1.3)). And it is consistent for two wave-numbers, for, as 7-f 0, either k - f  O-the 
limit of infinite wavelength corresponding to no disturbance-or A++ 0, which 
corresponds to a non-zero wave-number given by 

Now a wave-number k causing A+ to be negative cannot correspond in this way 
to  an unstable solution, whereas any wave-number causing A+ to be positive can. 
Hence this simple boundary-layer analysis makes it plausible that a necessary 
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and su&cient condition for stability to axisymmetric disturbances is that A ,  
should be negative. A similar analysis holds when the inner boundary is free, 
leading to the condition that A- be negative. 

This limit as a2 tends to zero from below is of interest, as it gives us the form of 
that disturbance which divides stability from instability. The thickness of the 
boundary layer tends to zero, so that there is no disturbance in the interior of the 
fluid, i.e. all disturbance quantities tend to zero, except for velocities actually in 
the surface itself, and the condition A ,  -+ 0 merely indicates that there tends to 
be a balance between the centrifugal force on a fluid particle on the disturbed 
free surface (e.g. the point X of figure l),  and the restoring force exerted on it by 
surface tension. 

It is interesting to note that the equations and boundary conditions also seem 
to admit of an axisymmetric solution for which all disturbance velocities are zero 
and for which is zero (as long as A is also zero) but for which 6 is non-zero. This 
would be a completely steady disturbance, with the original velocity distribution 
everywhere. But (for a free outer boundary) a ring of fluid at  the point X (figure 1) 
has a greater circulation than any ring of fluid in the undisturbed state, which 
contradicts Kelvin's circulation theorem for inviscid fluids. In  other words, this 
disturbance is not one which can arise from the basic state, and hence cannot 
exist. For a viscous fluid, however, the boundary-layer situation, with violent 
shear in a thin region, would be physically improbable, and it is this static dis- 
turbance which is likely to be the critical one. 

It is perhaps also worth remarking that the boundary-layer analysis presented 
above shows us the reason why the criterion for stability (to axisymmetric 
disturbances at least), given that the basic flow is stable, involves only the 
velocity at  the free surface, and no other parameter of the velocity distribution. 
It is because, for a nearly neutral disturbance, only the layers of fluid very near 
the surface are perturbed, so that the basic velocity gradient, for instance, is 
irrelevant. 

The above discussion has indicated the probable form of the stability criteria, 
at least for axisymmetric disturbances. The following sections will verify these 
results, by an exact analysis, and will point the way to some conclusions which i t  
may be possible to derive for non-axisymmetric disturbances. 

4. A suIScient condition for stability 
In this section we shall follow the methods of Howard & Gupta (1962, 0 3) for 

a general disturbance, noting that care must be taken when integrating by parts 
because of the boundary condition (2.11). First of all, assume that an unstable 
mode exists, i.e. that a and hence a has it negative imaginary part, so that a 
cannot be zero. Let us now change the dependent variable in equation (2.2), 
writing u = d F / r  (choosing a particular branch of d) the equation becomes 
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If we multiply this by F%, the complex conjugate of F ,  and integrate from a to b 
(where a may be zero, finite, or infinite), we obtain 

In order to evaluate the left-hand side of this equation, we must write the 
boundary conditions (2.6) and (2.11) in terms of F.  (2.6) becomes 

F = o(r) ,  
P = 0, 

r = 0, 

r = a (finite), (4.3) 

so that the quantity in the square bracket on the left of (4.2) is zero at  r = a for 
all a. The condition (2.11) becomes (using (2.5)) 

(4.4) 

the right-hand side also being evaluated at  r = b. Thus the left-hand side of 
(4.2) is 

evaluated at  r = b. 

da/dr  is real, let us take the imaginary part of equation (4.2), to obtain 
Now, we have assumed that a has a non-zero imaginary part. Noticing that 

When a < b (free outer boundary) both terms on the right-hand side are positive, 
as long as 

for all r .  The upper sign must be taken on the left-hand side, which is therefore 
negative if A+ is negative. Thus a sufficient condition for (4.6) to have only the 
trivial solution F = 0, i.e. a sufficient condition for stability, is that both (4.7) is 
satisfied, and A+ < 0. Similarly, when a > b, a sufficient condition for stability 
is that both (4.7) is satisfied, and A- 6 0. 

If daldr = n d( V/r)/dr should happen to be identically zero, the condition (4.7) 
reduces to Rayleigh's criterion, @(r)  2 0 everywhere. Thus the joint condition 

@(r)  2 0 everywhere, and A ,  < 0 
is a sufficient condition for stability if either n = 0, i.e. the disturbance is axi- 
symmetric, or d( V/r)/dr s 0, i.e. V = !2r (solid-body rotation), and then n may 
be non-zero. 
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For a non-axisymmetric disturbance to a general basic flow, however, the con- 
dition (4.7) does not reduce to the simple one we had hoped for. In  general, (4.7) 
may be written 

8k2r3V(r) 
n2 ' 

which, first, requires that the angular velocity of the basic flow either is constant or 
increases outwards, and, secondly, if the angular velocity does increase, (4.8) puts 
bounds on the values of k/n which are possible for unstable disturbances. How- 
ever, since in many flows of interest the angular velocity decreases outwards (for 
example, any flow with a hollow core which tends to the form of a potential 
vortex at large radius), and, since the fact that a sufficient condition for stability 
is not satisfied does not mean that the flow is unstable, we can see that (4.8) yields 
little useful information. The author, in common with those interested in the 
stability of Couette flow between rigid cylinders, has been unable to find a general 
necessary and sufficient condition for stability to non-axisymmetric disturbances. 
The only way in which any advance appears to be possible is by means of a 
separate numerical solution to the eigenvalue problem of (2.2), (2.6) and (2.11) 
for every case of interest. 

The analysis of this section may be extended to investigate the stability of the 
interface between two fluids of different but comparable densities, when the 
undisturbed tangential velocity is continuous across the interface (which is 
always required in practice). Alterman (1961) looked a t  this problem when each 
fluid was in solid-body rotation (and the angular velocities were different), but 
restricted her attention to axisymmetric disturbances. She obtained a necessary, 
and (although she did not realize it) sufficient condition for stability. In  the 
present case, we may use the above methods (with more complicated algebra) to 
show that sufficient conditions for stability are (i) that (4.7) should be satisfied 
by the undisturbed flow in each fluid, and (ii) that the quantity 

should be negative or zero, where p1 is the density of the inner fluid, and p2 that 
of the outer fluid. This reduces to 

0 2 0 in each fluid, and A < 0 

both when n = 0 (axisymmetric disturbances) and when V = Qr (solid-body 
rotation in each fluid). The details of the calculation are given in Pedley ( 1966,s 3). 

5. A necessary condition for stability to axisymmetric disturbances 
In this section it is demonstrated rigorously that the sufficient condition, found 

in $4,  for stability to axisymmetric disturbances (n = 0) is also a necessary condi- 
tion, confirming the plausible arguments of $ 3. When n = 0, CT is constant ( = a), 
8 is constant ( =  l /k2),  and considerable simplification results. For one thing, 
any eigenvalue C T ~  must be real, because now the only difference between (4.2) 
and its complex conjugate (for real k )  is that C T ~  is replaced by its complex conju- 
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gate, with the result that either F is identically zero, or a 2  is real. Hence, for a 
real disturbance, a2 is real. 

Now we must look in more detail at  the solutions of (2.2), which, setting 
ru = $, may be written 

It is convenient to change the independent variable to x = r2/b2, so that (5.1) 
becomes 

where $(x) = @(r) .  The boundary conditions also change: (2.6) becomes 

$ = o(x-2) as x + ~ ,  

$ = 0 when x = xo = (a/b)2, 

$ =  ~ ( x f )  as x+m. 
From (2.5), we have 

C+d$ 2a2d$ 
2 . q )  = - - = __ - 

rk2 dr lc2b2dx ’ 
so that (2.11) becomes 

We may note that, although equation (5 .2 )  is typical of Sturm-Liouville theory, 
the problem is not a Sturm-Liouville problem, because the eigenvalue a2 occurs 
both in the equation (5.2) and in the boundary condition (5.4). For this reason 
we cannot, as in the case of rigid boundaries, apply a standard piece of theory and 
quote the result; we must develop a separate theory for our particular circum- 
stances. 

From now on it will be necessary to classify flows according to the sign of @(r) .  
The easiest case is that of potential vortex flow, for which @(r)  = 0. This case 
was solved completely by Ponstein (1959), and his results are given in table 1. 
All other cases are presented below in this section. 

(i) @(r) 0 

In  this case $(x) 2 0 everywhere, and we require that there is a finite range of x, 
a subset of the range [l, xo] (where xo may be zero, finite, or infinite), over which 
$(x) is non-zero and positive. From (5.2), we immediately see that, if a2 is nega- 
tive, then d2$ldx2 has everywhere the same sign as $. Thus, when the outer 
boundary is free, and xo < 1 (exactly similar arguments hold for xo > 1) and if $ 
is taken (without loss of generality) to be positive in the neighbourhood of xo, the 
graph of $ is everywhere concave upwards (see figure 2 ,  full curve). Hence the 
left-hand side of (5.4) is always positive, and for consistency A ,  must be positive. 
This not only confirms what we already knew from 8 &that A ,  > 0 is a necessary 
condition for a2 to be negative (i.e. for instability)-but it also demonstrates that, 
for every negative a2, there exists a single, positive A ,  (or A- when x,, > 1) for 
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which the problem has a solution. Thus A+ can be regarded as a positive, single- 
valued function of g2, if - co < u2 < 0. 

In order for what follows to be valid, a certain further restriction must now be 
imposed on #(x) :  we require that it be bounded, or, mathematically, 

0 < #(x )  < 4R2 (say) (5.5) 

for all x in the range [ 1,  xo]. Since 
I d  2 vvw #(x )  = @ ( r )  = - - (r2V2) = - 
1.3 dr r '  

where w(r )  is the axial vorticity ; and, since both as r+O anL as r-tco the condition 
that w should be bounded implies that V = O(r) ,  the constraint (5.5) is equivalent 
to the condition of bounded vorticity in the undisturbed flow for all possible 
values of x,,. Such a condition is always satisfied in a real flow. 

With this restriction on #(x )  we may now proceed. We wish to prove that 
A ,  < 0 is a necessary condition for stability, or in other words that a sufficient 
condition for instability is A ,  > 0. Let us once more consider only the case when 
the outer boundary is free, and then the problem may be restated as follows: 
given an arbitrary positive value of A+, is there a solution of equation (5.2), 
satisfying boundary conditions (5.3) and (5.4), for Some negative value of u2? 
Or again: we know that A+ can be regarded as a positive function of g2 (for 
~2 < 0 ) ;  does it necessarily take all positive values as u2 varies between -co 
and zero! 

We shall answer the question as posed in its latter form. The condition on the 
inner boundary x = xo is that $ = 0. [Note that, when the inner boundary is 
free, and x,, = co, (5.3) appears to allow a non-zero $ = o(x f )  as x+xo; in fact 
all solutions of (5.2), for bounded #(x) ,  take the form 

$ N x*K,(k'x*) 

as x+co, where Ic' is proportional to Ic ,  and K,  is a modified Bessel function of 
the second kind, so that $ always tends to zero exponentially.] The outer 
boundary condition (5.4) may also be slightly rewritten. It tells us nothing about 
the value of $ at x = 1, only about the ratio of d$/dx to that value, so that by 
appropriate scaling we can always demand that $(1) = 1, and then A+ is related 
to the slope by - 2  

+ - k2b 
A --$'(1)g2 

(where the prime denotes differentiation with respect to x). Thus what we have 
to do is to soIve (5.2) subject to 

$@o) = 0, $(I)  = 1, (5.6) 

for all negative values of g2 .  Then $'( 1) will be a function of ~ 2 ,  with a positive 
value (see figure 2). Let us write 

n 
zi 
- $'(I) = G(g2).  
k2b 
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Now we shall prove that 
A+ -~'G(cT') 
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takes all positive values as a2 varies from - co to 0; and the proof may be per- 
formed in three stages. 

(1) a(@), and hence A+, is a continuous function of a2 for a2 + 0. The proof is 
standard and will be omitted. 

(2) Asa2+-co,A+-++m. When ( -  a2)isverylarge,theequation(5.2)reduces 
to 

-x 

FIGURE 2. Comparison of the graphs of $(x) for given boundary conditions, and three forms 
of $(x), for the case of the free outer boundary: , $(x) general, 0 < $(x) < 4@(*); 
- . - . - . - , $($) 0; _ _ _ _ - _ _ _  , $(x) 4 0 2  defined by (*). 

which is the equation for the case $(x) = 0. Reverting to the variable r,  we see 
from (5.1) that the solution of (5.7) satisfying the boundary conditions (5.6) is 

r K,(kr) Il(ka) - Il(kr) K,(ka) 
b Kl(kb)  I,(lca) - Il(kb) K,(ka) 

+'- 

(this curve is the dash-dot curve in figure 2), whence 

a2 Ko(kb) I,(ka) + Io(kb) K,(ka) 
A+ = k K,(kb)  I,(ka) - Il(kb) K,(ka) 

(from (5.4)), which is positive if a < b, and which tends to infinity as a2+-co. 
(3) A+ may be made arbitrarily small, by an appropriate choice of a'. This 

follows from a comparison between the solution $(x) of (5.2) as it stands, and the 
solution $&) of (5.2) when $(x) is replaced by an upper bound 4Q2 (see (5.5)). 
Everywhere in the range [xo, 11 
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so that the curve of lies everywhere below that of $(x) (see figure 2, broken 
and full curves respectively), and in particular, the slope of $Q(x) at x = 1 is 
greater in magnitude than that of $(x). In  other words, 

0 < G(g2) < G,(g2), 

(since ( ~ 2  < 0). Now - a2GQ(u2) is just what we might call A?), the value of A ,  
for this g 2  in the case $(x) = 4SP. So, if we can prove that, when $(x) = 4Q2, there 
exist negative values of g2 which permit A y )  to take arbitrarily small values, we 
shall then have shown that A ,  takes arbitrarily small values, because 

so that 0 < - g 2 G ( ~ 2 )  < - g2GQ(@) 

A + -  - -cT~G(cT~) < A!,?. 

But we have essentially proved this already, by the boundary-layer solution 
of Q 3. As cr2 ( = - T ~ )  tends to zero from below, the solution for $Q satisfying the 
boundary conditions (5.6) is approximately given by (3.4) with C = 1, and A y )  is 

Thus, as T tends to zero, A y )  also tends to zero, and there exist negative values of 
V'J for which A(:) becomes arbitrarily small. Hence assertion (3) above is proved. 
[The proof that AY) takes arbitrarily small values need not be given approxi- 
mately in this way, since the equation for can be solved exactly, and the 
boundary condition (5.4), expressed as an equation for u2, can be shown to have 
a solution for every positive AT). However, the analysis is tiresome, and the above 
argument, although approximate, is none the less valid.] 

We have proved that A+ is a continuous positive function of a2, which may 
take values both arbitrarily large and arbitrarily small for negative c2, completing 
the required proof that A+ < 0 is a necessary condition for stability to axisym- 
metric disturbances when the outer boundary is free, and 0 < $(x) 6 4Q2. A com- 
pletely parallel proof holds when the inner boundary is free, and the necessary 
condition is then A- 6 0. 

(ii) @(r)  < 0 
The first result of (i) above has an immediate parallel here; viz. if v2 is positive, 
then A ,  < 0. This means that A ,  < 0 is a necessary condition for stability. But 
it is not a sufficient condition for stability, because there may be negative values 
of A ,  which permit negative as well as positive values of g 2  (in (i) above it did not 
matter if for positive A ,  there were possible positive values of u2; there was one 
negative value, therefore instability had to follow). We shall indeed prove that, 
for every negative A ,  , there is at  least one negative characteristic value for u2, as 
well as a positive value, so that instability is possible for all A,,  and hence 
@ ( r )  < 0 always leads to instability. Take, therefore, an arbitrary negative A,,  
and see whether it can lead to a negative value for cr2. 

If we can show both that for two different negative values of g2 (say r~i and d$) 
(5.2) has a solution satisfying (5.3) and the condition $(1) = 0, and that, for just 
one intermediate value of u2 (say g:), there is a solution satisfying p ( 1 )  = 0, 
then we can see that there exists one value of cr2 (lying between crt and vi) for 
which (5.4) holds, with arbitrary A ,  < 0. For consider figure 3, which contains 
the graphs of y = $'(l)/$(l) and y = i- &k2bA*/( - (r2) as functions of ( -  g z ) ,  at 

related to 7 by (3.5), viz. kA?) = 2GT. 
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FIGURE 3. If $( l), as a function of a*, has at least 2 zeros (a: and a:), and if $’( 1) has just 
one intermediate zero (a!), then the equation $’( l)/@( 1) = constant/( - a*) always has a 
solution. 

-x 1 

FIGURE 4. The sequence of curves $(z) aa a2 is increased from a: to a:. An intermediate value 
of a: is found for which $‘( 1) = 0. 
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least between - CT$ and - u;. $'( 1)/$( 1) is infinite a t  cr2 = crt and u;, and, since it 
changes sign once in between (at c:), it must take all values between f CO while 
u2 lies between crt and a;. Thus the curve y = constant/( - u2), whatever the sign 
of the constant, must cut the curve of y = $'(l)/$(l) once, for u2 between 
a: and a;. 

Since the solutions of (5.2) satisfying (5.3) are continuous functions of c Z ,  it 
will be sufficient to show that there exists a value of a2(ai) for which $(x) has one 
zero at  x = 1, and one further zero for x between xo and 1. If then ( - a2) is 
increased, a value will be reached ( - a:) for which $'( 1) = 0; and, if it is increased 
still further, a value will be reached for which $( 1)  = 0 again (see figure 4, drawn 
for the case xo < 1). The first zero of $(x) away from xo moves continuously from 
a position between 1 and xo, in the direction of 1, until in the end it reaches 1. 
That such negative values of u2 do exist when $(x) < 0 follows from standard 
Sturm-Liouville theory, for now we have a real Sturm-Liouville problem, with 
$(s) = 0 a t  each end of the considered range, and no u2 in the boundary condi- 
tions (see, e.g., Burkill 1956, chapter 111). The proof is based on the fact that a 
sufficient condition for there to be at  least N zeros of +(x) in a range (xl, x2) is 

(this follows from the corollary to Burkill's theorem 13) so, if there is a finite 
range (xl, x2) within our range [xo, 11 in which $(x) < - S < 0, where 6 is arbi- 
trarily small, then ( - c r 2 )  may always be chosen sufficiently small for (5.8) to be 
satisfied with any N .  

Thus we have proved that to every A ,  there corresponds at  least one unstable 
solution, and therefore, when @(r) < 0,  all disturbances are unstable. This 
confirms the expectation voiced at the start of this section. 

(iii) The case where @ ( r )  changes sign 

In  this case also, as in the case with rigid boundaries, all flows are unstable, as 
long as there is a finite region within which @(r)  is less than zero. The arguments 
surrounding equation (5.8) show that there exist negative values of 0-2 which will 
cause $(x) to have at least two zeros within this region; whence, as in the last 
subsection, the graphs of y = $'( 1)/$( 1)  and y = rt &V%A,/( - g2) as functions of 
( -  a2) must intersect a t  least once. We have thus completed the proof that a 
necessary and sufficient condition for a general rotating flow (excluding Ponstein's 
case @ ( r )  = 0 )  to be stable to axisymmetric disturbances is that both @ ( r )  2 0 
for all r in [a, b] ,  and A ,  < 0. 

6. The 'most unstable disturbance' in the case of solid body rotation: 
@(r) EE 4i-P 

The analysis of Q 4 has shown that the case of solid-body rotation is a somewhat 
special one, in that the condition A ,  < 0 is sufficient for stability even to non- 
axisymmetric disturbances. Now, when the inner boundary is free, this condition 

(6.1) 
requires that pb3Q2/y 2 1 - n2 - k2b2, 
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demonstrating that non-axisymmetric disturbances must be stable. But 5 
shows us that (6.1), with n = 0,  is also a necessary condition for stability; so that 
here, as in the case of potential vortex flow, A- < 0 is indeed both a necessary 
and a sufficient condition for stability to all disturbances. 

When the outer boundary is free, on the other hand, A ,  < 0 requires that 
-pb3!2/y 2 1 - n2 - k2b2 (6.2) 

so that non-axisymmetric disturbances may be unstable. [Moreover, they are not 
covered by the analysis of Q 5, and so the flow may be stable even when (6.2) is not 
satisfied; indeed Hocking & Michael (1959) showed that plane disturbances 
(k = 0 )  are stable unless 

pb3Q2/y < n(n+ I) ,  

see table 1.1 It would therefore be of interest to work out whether instability 
might ever occur for a non-axisymmetric disturbance: i.e. if such a disturbance 
is ever the most unstable one, having a larger growth rate than any other. 
Ponstein (1959) showed that this indeed occurs in the potential vortex case, and 
some experiments by L. de Jong (private communication) indicate that it 
probably does in the solid-body case too. 

In  order to calculate the most unstable disturbance, it is necessary to know 
the exact form of a general unstable disturbance, which means solving the 
equations exactly. In  the case of solid-body rotation, this can be done, for, if u, 
instead of p ,  is eliminated from the equations, the resulting single equation for 
p(r)  is a modified Bessel’s equation of order n (see Phillips 1960, equation (4.6)). 
Unfortunately, calculation of the growth rate of a general unstable disturbance is 
still not possible in simple analytical terms, and it is only in the two extreme cases 
of plane disturbances (k = 0)  and axisymmetric disturbances (n = 0 )  that 
growth rates can be computed. However, this is enough for our purposes, for, if 
we can find a range of values of the physical parameters of the problem, for 
which the most unstable plane disturbance has a higher growth rate than the 
most unstable axisymmetric disturbance, then we shall have demonstrated that 
non-axisymmetric disturbances can indeed be the ones to appear in certain 
unstable situations. 

For convenience, and without loss of generality, we take the inner boundary 
of the flow to be r = 0. When k = 0, that solution of the equation for p(r)  which 
is regular at r = 0 is p = constant x rlni and the boundary condition (2.11) on 
r = b becomes (after A ,  is written out in full, and dropping the modulus signs 
round n )  

(cf. Hocking & Michael 1959). This shows that cr can have a non-zero imaginary 
part (for positive integer n), only if both n 2 2 and 

1-Ln(n+ 1)  > 0, 

where L = y/pb3Q2, (6.3) 

/32 = /3! = (n- 1) [1 -Ln(n+ I)]. (6.4) 

and, in that case, the imaginary part of a (written /3Q for convenience) is given by 
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Bearing in mind that n 2 2, this shows that, if L < 4, an unstable plane disturb- 
ance is possible. 

The case of n = 0 is a little more difficult, although we know C T ~  to be real. That 
solution of equation (5 .1)  which is regular a t  r = 0 is 

where 

and C is a constant. This time the boundary condition (2 .11)  becomes 

k’bIl(k’b) - 4 - u2/Q2 
- 

lo(k’b) 1 + h( 1 - k2b2) ’ 

Writing a 2  = -p2Q2 for an unstable disturbance, and replacing k‘blk by z, (6.5) 
becomes 

and (6.6) becomes 

4b2 
P 2 = m  

(6.7) tells us that maximizing 181 is equivalent to minimizing x ,  so we must (in 
principle) solve (6 .8 )  for z, and minimize it as k is varied. If, at  the minimum of z ,  
kx is sufficiently large, the quantity Il(kx)/lo(kz) will be approximately unity 
(indeed, this is valid to within 10 yo if kz is greater than about 6 ) ;  we shall there- 
fore assume it to be so, and verify it afterwards. (6 .8)  thus becomes 

To find the minimum of z ,  differentiate (6 .9)  with respect to k, put dzldk equal 
to zero, and obtain 

At this value of k, (6.9) gives z (which must be greater than b )  to be 

(27L) t+ [271 /+(1+L)3]8  
z = b  

(1+L)$ 
, 

(6.10) 

(6.11) 

which is evidently a minimum since, as kb+[(  1 + L)/L]9 in (6.9),  z-+co. The above 
condition that the value of kz corresponding to this solution should be greater 
than about 6 implies that 

1 + 3L - 105L2 - 107L3 > 0,  

which is certainly satisfied if L < A. Now the growth rate calculated from (6.7) 
and (6.11) is given by 

p 2  = p 2  = - 2( 1 + L)3 

- 27L + ( 2 7 q  1 + 30L + 3L2 + L3)}*’ (6.12) 
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The question we ask is whether the growth rate (6.4) for plane disturbances 
can be greater than the growth rate (6.12) for axisymmetric ones. It can, as long as 

P: ’ Pi. (6.13) 

The maximum permitted value of L is A, so try L = &: the right-hand side of 
(6.13) is then approximately 0.725, and n = 3 gives the left-hand side a value 0-8. 
So, for this and any smaller value of L, we can find an .n which will satisfy (6.13). 
Thus we have the final result that, if the quantity pbW2/y (= 1/L from (6.3)) is 
greater than a number slightly less than 20, there is a plane disturbance more 
unstable than any axisymmetric disturbance, and hence instability will not 
occur axisymmetrically. 

7. Possible applications. Effect of viscosity 
Situations where the stability of swirling flows with a cylindrical free surface is 

of interest are frequently encountered, particularly in the field of chemical 
engineering. Swirl atomization of liquid jets, for instance, is a process where 
rotation has a destabilizing influence (free outer boundary). In  general the basic 
swirl velocity distribution will not be solid-body rotation, owing to conditions 
at the nozzle where the jet is formed (far downstream from the nozzle, solid-body 
rotation would be set up by the action of viscosity, but the jet would have broken 
up by then anyway), and hence to consider arbitrary velocity distributions V(r )  
is not a purely academic exercise. Note that a slow axial variation of the basic 
flow will not affect the stability criteria, as long as the length scale of that varia- 
tion is large compared with the radial length scale b. Swirling flow in a pipe, with 
an air core, is e swirling flow with a free inner boundary, although in real situa- 
tions there will generally be a radially varying axial velocity W ( r ) ,  and possibly 
a tangential stress on the free surface (due to the flow of air), in addition to the 
basic swirl. Another example where the analysis for this case might be relevant 
is in the cavitating line vortex behind a hydrofoil. 

However, before such relatively complicated, industrial applications of the 
theory are made, in situations where other unforeseen phenomena may have an 
effect on the stability criteria, it would be worth trying to test it  by means of 
a simple, controlled, laboratory experiment. One such experiment readily springs 
to mind, which should test the conclusion that, when the inner boundary of a 
swirling flow is free, the flow will be stable to all disturbances as long as 

at  least in the cases of potential vortex flow and solid-body rotation. Partially 
fill a closed cylindrical container with a liquid and rotate it so rapidly about a 
vertical axis that an air core is formed, with, after a short time, solid-body rota- 
tion in the liquid surrounding it. The shape of the air core is determined by the 
balance of centrifugal, gravitational and surface tension forces, and will be 
narrower at  the bottom than at  the top. Thus, if it is possible to vary either the 
rotation speed or the volume of liquid in the cylinder, a situation can be reached 
where 

pb3SL2/y = 1 (7.1) 
10 Fluid Mech. 30 



146 T. J .  Pedley 

at a certain level in the cylinder. Above this level we should expect the interface 
to be stable, and below it we should expect it to be unstable to disturbances of 
long wavelength. 

The radius r of the air core is given by 

where the origin of z (the downwards vertical) is taken where r = b, and b is given 
by (7.1). For the stability analysis to be valid, the core must be almost cylindrical, 
i.e. in the neighbourhood of r = b 

i.e. (7.3) 

Eliminating b from (7.3) and (7.1), we see that the angular velocity must be very 
large for the analysis to be valid: 

L2 % (s3P/8YP. (7.4) 

If the liquid is water (y  + 74dynes cm-I), the right-hand side of (7.4) works out 
at  about 300 rev/min, which means that the rotation rate must be high, but not 
impossibly so. 

It only remains now to discuss the effect of viscosity on the stability criteria 
listed in table 1. There are two possible ways in which it might be important. 
First, the basic swirl will in general be determined by viscosity, and is therefore 
likely to be essentially unsteady (unless it is a solid-body rotation). Thus, for the 
theory to be valid, the time-scales of the relevant disturbances must be small 
compared with the time-scale of changes in the basic flow-we must assume a 
quasi-steady situation in which the Reynolds number of the basic flow is large. 
Secondly, and more important, viscosity will affect the disturbances themselves. 
In  many circumstances one expects viscosity to be a stabilizing influence-for 
instance, the criterion for stability of a cylindrical free surface without rotation 
is unaffected by viscosity, which merely damps out stable oscillations, and 
decreases the growth rate of unstable ones (Rayleigh 1892). In  the case of 
rotating flows between rigid cylinders, the stability criterion for axisymmetric 
disturbances is altered, in that certain flows, unstable by the inviscid analysis, 
are stabilized (Taylor 1923). The cases where a small viscosity has a destabilizing 
influence are usually those where the phase velocity of the disturbance has a 
component parallel to the basic flow (e.g. plane parallel shear flows in the presence 
of a wall). Thus in our problem we shouId expect viscosity to have a destabilizing 
influence only on non-axisymmetric disturbances, for which the phase velocity 
has an azimuthal component: this is indeed found to be the case when the basic 
swirl is a solid-body rotation. In a series of papers by Hocking (1960), Gillis (1961) 
Gillis & Kaufman (196l), Gillis & Suh (1962), the viscous stability problem, when 
?' = QT, has been completely solved by means of a combined analytical and 
numerical treatment, at  least for the case of a free outer boundary (a similar 
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treatment no doubt works for the other case, but all non-axisymmetric disturb- 
ances are essentially stable then anyway) and it is shown that, for any disturbance, 
and any viscosity, a necessary and sufficient condition for stability is A ,  < 0. 
Thus the criterion for stability to axisymmetric disturbances is unaltered, but 
certain plane disturbances (and presumably certain general non-axisymmetric 
disturbances also, although no inviscid criterion is known for them) are de- 
stabilized. The viscous result, that the necessary and sufficient stability criterion 
reduces to A ,  < 0 for all disturbances, is refreshingly simple, but we must 
remember that it has been obtained only for solid-body rotation, the sole basic 
flow itself unaffected by viscosity, and the analysis cannot be extended to other 
situations. However, the result does have some relevance to other basic flows, 
since viscosity will always cause them to tend (slowly) to a solid-body rotation in 
the neighbourhood of the free surface r = b, and, as long as O(r) is everywhere 
positive, the stability criterion depends only on the velocity near r = b. So we 
might expect the stability of real fluids in a real experimental set-up to depend 
only on the signof A ,  (and the sign of cD(r), of course). This surmise, however, has 
no rigorous justification. 
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